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ABSTRACT 

 

The principal component biplot (PCA biplot) is a graphical tool to simultaneously visualise 

the scores and loadings of the principal components obtained from the classical principal 

component analysis. The plot is widely using in the areas of plant breeding, genetics, 

manufacturing industry, agriculture, etc. Unfortunately, the least-square principal component 

analysis is not robust to the presence of outliers in the data set and hence the principal component 

biplot too. The extreme observations may unduly influence the form of the first few principal 

components and change the actual structure of the biplot. Consequently, the inference based on 

this plot will be misleading when the data contain outliers. This paper introduces a robust principal 

component biplot based on ROBPCA method proposed by Hubert, Rousseeuw and Vanden 

Branden (2005). The length of a vector representing a variable is then approximately proportional 

to its robust standard deviation while the cosine of the angle between two variables is 

approximately equal to their robust correlation. 
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1. INTRODUCTION 

A biplot is a graphical display of rows and columns of a rectangular n × p data matrix X, 

where the rows are often subjects or sample units, and the columns are variables. The biplot, 

introduced by Gabriel (1971), is a joint representation of the n individuals and of the p variables. 

It is constructed by factoring a n × p matrix Z, by singular value decomposition (SVD), which is 

a rank - r approximation of X, as 

                                                 Z = GHT,  

where G and H are n × r and p × r matrices respectively, with r usually equal to 2 or 3. Gabriel 

suggests using “biplot” only for r = 2 and using “bimodel” for cases when r = 3. The rows of G 

contain the coordinates of the points representing the n individuals. The plot of these n points is 
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called a g – plot. The coordinates of the variables appear in the matrix H. Their graphical 

representation is called the h – plot. A biplot is made of two entities, a h – plot and a g – plot 

(Daigle and Rivest, 1992). This provides a useful tool of data analysis and allows the visual 

appraisal of the structure of large data matrices (Gabriel, 1971). 

The principal component biplot (PCA biplot) is a graphical tool to simultaneously visualize 

the scores and loadings of the principal components obtained from the classical principal 

component analysis. Principal component analysis (PCA) is a popular statistical method, which 

tries to explain the covariance structure of the data by means of a small number of components. 

These components are linear combinations of the original variables, and often allow for an 

interpretation and a better understanding of the different sources of variation. In the classical 

approach, the first component corresponds to the direction in which the projected observations 

have the largest variance. The second component is then orthogonal to the first and again 

maximizes the variance of the projected data points. Continuing in this way produces all the 

principal components, which correspond to the eigen vectors of the empirical covariance matrix. 

The scores and loadings (eigen vectors) obtained from the PCA are using for g –plot and h-plot 

respectively. 

The PCA biplot is useful to plant breeders who are conducting large-scale trials to 

investigate the performance of large numbers of genotypes in several environments with the aim 

of selecting the “best” genotypes for the purpose of further improvements of crops (Kroonenberg, 

1995). This plot can be used for multiplicative models for analyzing G x E interaction. The biplot 

displays points for varieties and environments from the multiplicative model on the same graph so 

that the expected response may be derived from visual inspection of the positions on the plot. This 

is also useful in the areas of manufacturing industry, mining industry, agriculture, finance, 

archaeology, etc.  

Unfortunately, most of the datasets contain anomalous observations or outliers, which are 

the observations with a unique combination of characteristics and are deviate from the pattern 

suggested by rest of the data.  When the data contain nasty outliers, typically two things happen: 

 the multivariate estimates differ substantially from the “right” answer, defined here as the 

estimates we would have obtained without outliers; 

 the resulting fitted model does not allow to detect the outliers by mean of their residual, 

Mahalanobis distances or the widely used “leave-one-out” diagnostics 
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 (Hubert, Rousseeuw and Van Aelst, 2008).  The presence of outliers changes the actual structure 

of the biplot and hence the inference based on this will be useless or misleading. In this paper we 

propose a robust principal component biplot based on ROBPCA method which is much less 

influenced by the outliers. 

 

2. PRINCIPAL COMPONENT BIPLOT (PC BIPLOT) 

The principal component biplot is a graphical tool to simultaneously visualise the scores 

and loadings of the principal components. Let X be a n x p matrix of observations of n units on p 

variables. Define Y as a n x p matrix in which the mean of each variable in X matrix has been 

subtracted out, i.e. Y = X – M, where M is the mean vector. Then 

     S = (1/n) Y’Y              (2) 

is the corresponding p-variate estimated variance – covariance matrix. A standardized measure of 

the distance between the ith and eth units is given by 

     d2
i,e = (yi – ye)’ S

-1((yi – ye)              (3) 

(Seal, 1964, pp.126-127). 

Principal component analysis consists of singular decomposition of such a matrix Y (Whittle, 

1952). This is,  

                                        𝐘 = ∑ λα𝐩α
r
𝛼=1 𝐪α

′                  (4) 

Where r is the rank, λα is the singular value, pα is the singular column and qα’ is the singular row. 

Here λα, pα, and qα are chosen to satisfy  

    pα’Y = λα qα       (5) 

    Yqα = λα pα       (6) 

    YY’pα = λα
2

 pα       (7) 

    Y’Yqα = λα
2

 qα        

        => nSqα = λα
2

 qα       (8) 

             λ1 ≥, …, ≥ λr > 0                    

Any solution to the pair of equations (5) and (6), (5) and (7), and (6) and (8) will satisfy the 

remaining equations. The method of least squares then provides  

   𝐘(s) = ∑ λα𝐩α
s
𝛼=1 𝐪α

′                          (9) 

as the rank s approximation to Y (Householder and Young, 1938). 

Now, for biplotting the matrix Y, consider the rank 2 approximation Y(2) of Y, 
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      Y(2) = GH’ 

where G = (p1, p2)√n and H = (1/√n)( λ1q1, λ2q2) (Gabriel, 1971). In biplot the loadings (H matrix) 

represented by arrows and the scores (G matrix) represented by data points or sample identifiers. 

Gabriel (Gabriel, 1971) explains the properties of this decomposition and the plot. The 

relationships between variables (via loadings) and observations (via scores) can be analysed 

through this plot. The lengths of the arrows in the plot are directly proportional to the variability 

included in the two components (PC1 and PC2) displayed, and the angle between any two arrows 

is a measure of the correlation between those variables.  

It is well known that least-square principal component analysis is not robust to the presence 

of outliers in the data set. The extreme observations may unduly influence the form of the first few 

principal components, making the g - plot a display of the opposition between outliers and the bulk 

of the data and sometimes suggest relationships (or lack of relationships) among variables which 

are not representative of the main structure of the data set (Daigle and Rivest, 1992). So, it is 

always better to look for an alternative biplot which is resistant to the influence of outliers. 

  

3. ROBPCA BIPLOT 

 A robust principal component biplot is obtained through a robust principal 

component analysis (RPCA). The goal of RPCA methods is to obtain principal components that 

are not influenced much by outliers. A first group of methods is obtained by replacing the classical 

covariance matrix by a robust covariance estimator. This group includes the methods proposed by 

Maronna (1976), Campbell (1980), Croux and Haesbroeck (2000), Salibian-Barrera, van Aelst and 

Willems (2006). All these methods are affine equivariant but limited to small to moderate 

dimensions. 

A second approach to robust PCA uses projection pursuit (PP) techniques. These methods 

maximize robust measure of spread to obtain consecutive directions on which the data points are 

projected. This group of methods includes the methods proposed by Hubert, Rousseeuw and 

Verboven (2002), Li and Chen (1985) and Croux and Ruiz-Gazen (1996, 2005). 

Hubert, Rousseeuw and Vanden Branden (2005) proposed a robust PCA method, called 

ROBPCA, which combines the ideas of both projection pursuit and robust covariance estimation. 

The PP part is used for the initial dimension reduction. Some ideas based on the Minimum 

Covariance Determinant (MCD) estimator then applied to this lower dimensional data space. 



Research Article 

Veritas Journal of Sciences Vol. 1, No. 1, December 2020                                                           47 

Simulations in Hubert, Rousseeuw and Vanden Branden (2005) have shown that this combined 

approach yields more accurate estimates than the raw PP algorithm. ROBPCA can be computed 

rapidly, and is able to detect exact-fit situations.  

In ROBPCA method the original data are stored in a n x p data matrix X = Xn,p, where n 

denotes the number of objects and p denotes the original number of variables. The ROBPCA 

method then proceeds in three major steps. First, the data are preprocessed such that the 

transformed data are lying in a subspace whose dimension is at most n-1. Next, a preliminary 

covariance matrix S0 is constructed and used for selecting the number of components k that will 

be retained in the sequel, yielding a k-dimensional subspace that fits the data well. Then the data 

points are projected on this subspace where their location and scatter matrix are robustly estimated, 

from which its k nonzero eigen values l1,…, lk are computed. The corresponding eigenvectors are 

the k robust principal components.  

In the original space of dimension p, these k components span a k-dimensional subspace. 

Formally, writing the (column) eigen vectors next to one another yields the p x k matrix Pp,k matrix 

with orthogonal columns. The location estimate is denoted by the p-variate column vector �̂� and 

called the robust center. The scores are the entries of the n x k matrix 

    Tn,k = (Xn,p – 1n�̂�’)Pp,k,                      (10)  

where 1n is the column vector with all n components equal to 1. Moreover the robust principal 

components generate a p x p robust scatter matrix S of rank k given by 

     S = Pp,kLk,kPp,k’,                (11) 

where Lk,k is the diagonal matrix with the eigen values l1,…, lk. Like classical PCA, the ROBPCA 

method is location and orthogonal equivariant. Hence the scores do not change under location or 

orthogonal transformation (Hubert, Rousseeuw and Vanden Branden, 2005). Hubert, Rousseeuw 

and Vanden Branden (2005) have given the complete description of this method along with an 

algorithm for ROBPCA.  

 In this proposed ROBPCA biplot the loadings and scores obtained from the ROBPCA 

method have been used. To draw the biplot, value of k is fixing to 2 as the plot is two dimensional. 

Then the p x 2 matrix Pp,2 contains the eigenvectors corresponding to the first two components and 

    Tn,2 = (Xn,p – 1n�̂�’)Pp,2, 
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consists of the scores corresponding to the first and second principal components. The first two 

robust principal components generate a p x p robust scatter matrix S of rank 2 given by 

     S = Pp,2L2,2Pp,2’,              (12) 

where L2,2 is the diagonal matrix with the eigen values l1and l2. The matrices Pp,2 and Tn,2 have 

been used to plot the robust principal component biplot. The length of a vector representing a 

variable is then approximately proportional to its robust standard deviation while the cosine of the 

angle between two variables is approximately equal to their robust correlation.  

 

4. CRIME IN INDIA DATA - 2012 

The example is concerned with the crime in India data for the year 2012 from the 

publication of National Crime Records Bureau (NCRB) and the population data from Census -

2011 report.  

  Table 1: Variables 

VC Violent crimes 

CAW Crime against women 

CAC Crime against children 

CASC Crime against S.C. 

EO Economic offences 

JC Juveniles in conflict with Law 

REC Recidivism 

CC Cyber Crimes 

CCAPP Complaints/Cases Registered Against Police Personnel 

VPS Value Of Property Stolen 

PPKI Police Personnel Killed Or Injured On Duty 

POP Population 

AREA Area 

 

Robust pca biplot explains the correlated structure of the crime in India data. It explains 

the inter-relationship between states, crimes and states and crimes. Since the variables are 

measured in different scales, data matrix has been standardized by dividing by their robust standard 

deviations. MATLAB software has been used to construct the plots. Figure 1 provides the scree 



Research Article 

Veritas Journal of Sciences Vol. 1, No. 1, December 2020                                                           49 

plot of Eigen values of the data and it reveals that the first two components are enough to explain 

the structure of the data. The first two components are explaining 84.17% of the variation of the 

data.  

Figure 1: Scree plot 

 
 

The ROBPCA biplot in figure 2 reveals the fact that there is a strong correlation between 

the variables Juveniles in conflict with Law and Crime against children. Violent crimes, Crime 

against women, Recidivism, Cyber crimes and Police personnel killed or Injured on duty are also 

correlated. Lengths of the rays give information about the standard deviations of variables and 

from the figure it is clear that complaints/cases registered against Police personnel and Crime 

committed against SC has higher standard deviations than others. It is also clear that Maharashtra 

(MH), Madhya Pradesh (MP), Uttar Pradesh (UP) and Rajasthan (RAJ) are lying far away from 

other states with respect to its crime behavior.   

 

 

 

Figure 2: ROBPCA Biplot 
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Biplot also provides information about the relationships between variables and 

observations. For example, the above figure reveals that there is a high relationship between 

Complaints/Cases Registered against Police Personnel (CCAP) and the capital territory Delhi. 

From the data table we can see that number of CCAP is very high in Delhi. Also Crime against 

scheduled caste is very well connected with Bihar. There is a well-developed cluster is visible in 

the figure which is formed by the Union Territories other than Delhi and North-East states. It 

means that, these states have similar crime behavior. 

 

5. CONCLUSION 

 It is well-known that the classical principal component analysis is not robust against the 

presence of outliers in the data set and hence the principal component biplot too.  Consequently, 

the inference based on this plot will be misleading when the data contain outliers. This paper 

introduces a robust principal component biplot based on ROBPCA method proposed by Hubert, 
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Rousseeuw and Vanden Branden (2005). It is much less influenced by the outliers and thus can be 

used for a better study. The variables are represented by the rays of the biplot and the length of the 

ray is approximately proportional to its robust standard deviation while the cosine of the angle 

between two rays is approximately equal to their robust correlation. 
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